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1. RESEARCH OBJECTIVE

The overall objective of the proposed research is to develop and verify

mathematical models of deformation and delamination of elastic and

viscoelastic fibrous composites with distributed damage. Emphasis of the

theoretical and experimental studies is on graphite/epoxy composites under

Icomplex loadings which produce matrix damage and delamination.

2. ACCOMPLISHMENTS

2.1 Overview -

Methods of deformation and fracture characterization are simplified when

strain energy-like potentials based on mechanical work can be used. Research

during the grant period has been primarily concerned with development of the

theoretical basis for the approach, and with experimental studies which

demonstrate its validity for rubber-toughened and untoughened graohite/epoxy

I composites with growing or constant matrix damage and delamination.

3In the following sections the research work and primary findings are

summarized by abstracting the papers and dissertations which detail the

studies. In Section 2.2 the general theory is covered; it allows for evolving

or constant damage. Viscoelastic effects in the matrix with constant damage

I are considered in Section 2.3 in a study of tubes under axial and torsional

loading. Sect-,, 2.4 discusses predictions of matrix damage due to thermal

stresses and an -rimental program that supports the theory. An extensive

1 experimental study of bars under axial and torsional loading is described in

Section 2.5; path-indeperuence of work during periods of growing damage is

shown for composites with toughened and untoughened resins. Sections 2.6 and

2.7 cover predictions and experimental verification for in-plane loading of

Ilaminates; the method of analysis, which is based on a work-potential and its

I
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minimization, is compared in the former study to a method of analysis based on

plasticity theory. The work-potential provides the basis for the J-integral

in delamination fracture analysis. investigations using this type of analysis

and experimental studies of the double cantilever beam with multidirectional

plys is summarized in Section 2.8. Two related studies of beam-width effects

and shear deformation effects are described in Sections 2.9 and 2.10,

respectively.

The Appendix contains the two papers which appeared after the annual

3I report was submitted in August 1988.

*I 2.2 A Theory of Mechanical Behavior of Elastic Media with Growing Damage

and Other Changes in Structure [11*

3I Strain energy-like potentials are used to model the mechanical behavior

of linear and nonlinear elastic media with changing structure, such as micro-

5 and macrocrack growth in monolithic and composite materials. Theory and

experiment show that the applied work for processes in which changes in

I structure occur is in certain cases independent of some of the deformation

3I history. Consequences of this limited path-independence are investigated, and

various relationships for stable mechanical response are derived. For

5 example, it is shown that work is a minimum during stable changes in

structure, which should be useful for developing approximate solutions by

variatiorl methods. Some final remarks indicate how the theory may be

extended to include thermal, viscoelastic, and fatigue effects.

2.3 A Method For Studying Composites with Changing Damage by Correcting

For the Effects of Matrix Viscoelasticity 121

3I A technique is described for modifying stress-strain data on fibrous

composites so that effects of changing damage may be observed without the

I *The number in brackets refers to the publication which is abstracted here;

the publication list starts on page 6.I



complicating effects of matrix viscoelasticity. The method, which is based on

micromechanical considerations, reduces the behavior to that of an equivalent

elastic composite with damage. The fibers are assumed to be continuous and

linearly elastic. The theoretical basis is developed and then the method is

* illustrated using results from cyclic axial-torsional loading of tubular

specimens of graphite/epoxy laminates.

1 2.4 Thermally-Induced Fracture in Composites 131

This work is an experimental and analytical investigation of thermally-

induced cracking in cross-ply graphite/epoxy composites. It is shown

experimentally that both rates and amplitijdes of the thermal excursions ft

the extent and the form of damage. The analytical study shows that the early

3 stages of sufficiently slow thermal excursions result in crack patterns that

are analogous to mechanical loading effects, and can be assessed by an

approximate, two-dimensional micro-cracking rodel. However, three-dimensional

aspects of the spatiall) non-uniform stress field may have to be included to

model crack formation under subsequent temperature excursions or rapid thermal

5 fluctuations. In the latter cases oblique and curved cracks develop and the

laminate is susceptible to internal and free-edge delaminations.I
2.5 Deformation and Delamination of Inelastic Laminates Under Tensile

and Torsional Loading 14,5]

This study is a fundamental examination of the theoretical hypothesis

I that mechanical work is a (multivalued) potential function which characterizes

3 the deformation and fracture behavior of inelastic materials during damage

growth processes. Experimental data from fiber-reinforced plastic laminates

3 (with and without rubber particle toughening) subjected to axial and torsional

deformation are analyzed for the existence of the work potential. The workI
I
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potential is first employed to analyze data from proportional deformation

tests and make predictions of load response. Good agreement is obtained

between theory and experiment. Data fru m nonproportioiaI deformatiOn tests

are then evaluated for displacement-path independence of work and load

response. Domains of path independence are found from specimens strained well

into the range of nonlinear inelastic behavior. Thus, the results of these

experimental studies support the existence of a work potentia". Although

viscoelastic effects are present, they are minimized by using isochronal data

in the characterization of mechanical work. Finally, work potential theory

and experimental results are used to determine critical energy release rates

for mixed mode delamination of laminates subjected to axial and torsional

defo, ,at ions.

2.6 A Method for Mechanical State Characterization of Inelastic Composite

Laminates with Damage 16]

The method using a work potential, and its minimization, is described for

the characterization of mechanical behavior of inelastic composites witi,

damage, but without significant time-dependent behavior. It is based on the

theoretically and experimentally motivated assumption of path-independence of

mechanical work over limited ranges of stress or strain states. This method

and, for comparison, an approach employing plasticity theory are illustrated

with the special case of a unidirectional-fiber laminate or ply. Use of the

work-potential method for a multidirectional-fiber laminate is discussed in

the concluding remarks.

2.7 Mechanical Characterization and Analysis of Inelastic Composite

Laminates with Growing Damage [71

A method of laminate characterization and analysis is described in which
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growing damdge and other inelastic phenomena are treated using the same

mathematical formalism, thus simplifying the description of mechanical

response. It is based on the observation that the applied work is not

sensitive to many details of the deformation history. Following a brief

discussion of the thermodynamically-based theory, a special version is used

along with experimental data on graphite/epoxy composite to obtain an explicit

mathematical characterization of a unidirectional ply. Predictions of

mechanical response are then compared to experimental results for a variety of

layups, one of which delaminates from the edges. Good agreement between

theory and experiment is shown.

2.8 Determination of the Mode I Delamination Fracture Toughness of

Multidirectional Composite Laminates [8]

The objective of this study is to develop and verify a J-integral method

for characterizing mode I delamination fracture of composite laminates with

distributed matrix damage. Attention focuses on the special problems

associated with delamination of composites with multidirectional (as opposed

to unidirectional) layups. Nonlinear beam theory is used to analyze the

double cantilever beam specimen to derive an approximate expression for the J-

integral. A related test method is proposed. An experimental program and

results are described which explore the utility of the method and the

variables affecting delamination of multidirectional composites.

2.9 Effect of Finite Width on Deflection and Energy Releases Rate

of an Orthotropic Double Cantilever Specimen [91

The problem of an orthotropic cantilevered plate subjected to a uniformly

distributed end load is solved by the Rayleigh-Ritz energy method. The result

is applied to laminated composite, double cantilevered specimens to estimate
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the effect of crack tip constraint on the transverse curvature, deflection and

energy release rate. The solution is also utilized to determine finite width

correction factors for fracture energy characterization tests in which neither

plane stress nor plane strain conditions apply.

2.10 A Technique for Predicting Mode I Energy Release Rates Using A

First Order Shear Deformable Plate Theory [10]

Utilizing a first order shear deformable plate theory, a technique is

described for predicting the distribution of the energy release rate along a

curved or straight mode I planar crack in the plane of a plate (such as a

delamination crack). Accuracy of the technique is assessed by comparing the

distributions of energy release rate with those predicted by two and three

dimensional finite element analyses of double cantilever beam specimens with

straight crack fronts.
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I
A METHOD FOR MECHANICAL STATE CHARACTERIZATION
OF INELASTIC COMPOSITE LAMINATES WITH DAMAGE*

R. A. SCHAPERY

Department of Civil Engineering, Texas A&M University,
College Station, Texas 77843

ABSTRACT

A method using a work potential is described for the characterization of
mechanical behavior of inelastic composites with damage, but without
significant time-dependent behavior. It is based on the theoretically and
experimentally motivated assumption of path-independence of mechanical work
over limited ranges of stress or strain states. This method and, for
comparison, an approach employing plasticity theory are illustrated with
the special case of a unidirectional-fiber laminate or ply. Use of the
work-potential method for a multidirectional-fiber laminate is discussed in
the concluding remarks.

KEYWORDS

Composites, Laminates, Damage, Inelasticity, Plasticity

1. INTRODUCTION

Considerable progress has been made in recent years on the development of
high strength-to-weight, tough structural composites. This behavior is
achieved in-part by laminating individual plies of unidirectional,
continuous fiber-reinforced plastic or metal. The laminates are resistant
to crack growth through the thickness if two or more fiber orientations are
used. Delamination and cracking within plies is reduced by using duct'le
matrices. For organic polymer matrices, the ductility is obtained by
adding toughening agents, such as rubber particles, to normally brittle
crosslinked resins, or by using resins with little or no crosslinking
(Johnston, 1987). These improvements in material performance place
increased demands on the structural designer and those concerned with the
micromechanics of composites if inelasticity is due to both plastic
deformation and damage or if it has to be considered under a wider range of
conditions than for the brittle matrix systems.

iraditionally, matrix ductility has been treated using incremental
plasticity theory (Christensen, 1979) while micro- and macrocracking of
composites have been analyzed using linear elasticity theory (Wang and

*Published in Advances in Fracture Research, Proc. Seventh Int. Conf.

Fracture, Vol. 3, 2177-2189, 1989.
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Haritos, 1987). In this paper we discuss an approach to characterizing
inelastic composite material behavior which is based on total rather
than incremental strains. Also, the approach uses the same mathematical
formalism for inelasticity due to plastic deformation as due to cracking on
various scales and other damage mechanisms; the term inelasticity, as used
here, refers to any stable behavior in which stress or load is not always a
single-valued function of strain or displacement. It is believed that this
unified approach simplifies the problem of understanding and predicting
mechanical behavior of composites with damage. Fatigue and time-dependent
behavior and thermal effects are not treated here, although approaches have
been proposed in the papers which motivated the present study (Schapery,
1987a, 1988).

Schapery (1987a) has shown theoretically that the stresses and mechanical
work of deformation are often independent of many details of the
deformation history when the inelasticity is due to micro- and
macrocracking. However, cracking is not the only mechanism that produces
this behavior. Indeed, it has been observed for a rubber-toughened,
graphite/epoxy composite in which there are probably significant effects of
shear banding in the matrix (possibly initiated or enhanced by cavitation
of rubber particles) (Yee, 1987). This limited path-independence was used
by Schapery (1988) to develop a constitutive theory that treats different
inelastic mechanisms within the same mathematical framework. Also, as
shown by Schapery (1987a), fracture analysis is simplified when this theory
is valid because of the applicability of certain equations for relating
changes in local and global energies.

Figure I illustrates one type of path-independence we have found for the
rubber-toughened composite. Rectangular composite bars with an angle-ply
layup (alternating fiber angle, e = ± 350, with respect to the axial
direction) were subjected to various axial and torsional deformations

z

U)
CEE

L.i

X AXIAL SHEAR
5' LINE STRAIN STRAIN

TYPE HISTORY HISTORY
C, 2.5 2,5
z 2,5 1,6

2,5 3.4
O 3,4 2,5
Z 16 2,5

01 .02 .3

NOMINAL SHEAR STRAIN

Fig. 1. Shear stress-strain curves for proportional and nonpro-
portional straining of an angle-ply laminate; Hexcel T2C
145/F155 graphite/epoxy I+-350I6s; 0.15" thick X 0.5"
wide X 8.75" long. From Lamborn and Schapery (1988).



!3
through controlled movement of the end-grips. The different deformation
paths are identified in Fig. 1 by number; for example, the bottom line type
is used for axial history 1 during the first loading period and axial
history 6 during unloading, while the corresponding torsional histories are
2 and 5. The "nominal" shear stress and shear and axial strains are
quantities which are proportional to the torque, twist, and axial
displacement, respectively; the proportionality coefficients depend only on
the specimen dimensions, and are introduced to minimize the effect of
specimen-to-specimen size differences.

At the end of the first loading period, the five different strain paths
result in practically the same stress (Fig. 1) and total work. The same
behavior holds for the unloading and reloading. In contrast, unreinforced

aluminum bars exhibit significant path-dependence (Lamborn and Schapery,
1988); we do not know if fiber-reinforced aluminum would exhibit less path-
dependence.

Unloading and reloading behavior of the graphite/epoxy material under pure
axial or torsional straining is similar to that shown in Fig. 1; there is
significant hysteresis and the average slope of the loop decreases with
increasing strain at the unloading point. The stress during loading does
not usually exhibit a maximum point prior to fracture, in contrast to that
in Fig. 1. We are now investigating the damage state as a function of
deformation history using similar specimens; significant edge delaminations
have been found at the highest stresses for deformation histories like
those in Fig. 1.

The primary effects of deformation history on the composite appear to be
associated with the sign of (nominal) strain rate and the strain magnitude
when the sign last changed. Although a more precise definition of limited
path-independence was given by Schapery (1988) here we shall just refer to
differences between loading, unloading, and reloading curves, and suppose
that for each case there is no effect of path (which is approximately true
for the data in Fig. 1).

The local stresses and strains (as opposed to the "nominal" quantities in
Fig. 1) are distributed very nonuniformly throughout the specimens used in
these axial-torsional tests, and thus the results cannot be used directly
in a basic material characterization of the composite. However, it is
unlikely that the specimens' overall behavior would exhibit limited path-
independence if the ply-level constitutive equations did not reflect this
type of behavior.

The discussion in Sections 2-4 is concerned primarily with the
characterization of the behavior of i undirectional-fiber laminate
consisting of one or more plies under the assumption of this limited path-
independence. Special versions of the theory (Schapery, 1988) are used here
to illustrate it for composites. Specifically, Section 2 considers
nonlinear loading and unloading behavior, and expresses the inelasticity in
terms of one parameter S which represents the effect of microstructural
changes on the overall stress-strain behavior; such S-parameters provide
the inelasticity and, in the context of some thermodynamic formulations,
are called internal state variables. Section 3 contrasts the theory with a
plasticity model based on the normality rule, and uses the characterization
in Section 2 as an example. In Section 4 another illustration is given by
using a linear approximation for unloading behavior. Concluding remarks in
Section 5 discuss in-part the use of unidirectional ply characterization in
laminates with ply-level and larger scales of ddmage.

I
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2. A CONSTITUTIVE EQUATION WITH NONLINEAR UNLOADING BEHAVIOR

Figure 2 shows a unidirectional laminate or ply and the coordinate
notation, in which the x1 axis is parallel to the fibers; the xj axis is
normal to the ply plane. The stresses c. and strains E i (i = ,2,...6)
are mechanical variables referred to thJ principal material coordinates
xi. In most of the discussion it will be convenient to use this single
index notation. As is customary, i = 4,5,6 are used for the shearing
variables; the relationship between single and double indexed variables for
plane stress is

011 = 01, 022 = 02, 012= 06 (1)

Ell = C1, F22 = E21 2E12 = E6

A constitutive equation will be proposed which accounts for nonlinear
loading and unloading behavior and which is consistent with the path-
independence of work discussed in the Introduction as well as the nonlinear
behavior reported by Lou and Schapery (1971) and Sun and Chen (1987); the
reader is referred to these two papers for the experimental data, as space
does not permit its reproduction here. Specifically, a stra4- anergy
density w = w(ei, S) is assumed to exist, where the microstructure state is
defined by S; only one structure parameter S will be used here, although
more could be introduced, if necessary. By definition of w,

ai = 3w/?ji (2)

In both aforementioned references strains are expressed in terms of
stresses, and thus it is helpful to eliminate w in favor of a so-called
dual strain energy density w = w (0., S),

w E w - 3ici (3)

(Throughout this paper the summation convention is employed, in which a
repeated index implies summation over its range.) By using (2) and
introducing differential changes in (3), it follows in the usual way that

Ei= - aw /3 (4)

A form of w discussed by Schapery (1988, Eq. (A24)) is proposed now for
characterizin ply behavior,

Y
x 2  X,

Fig. 2. Unidirectional composite and coordinates.
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w = w +P(OS) (5)

where w = Wo(c.), o = o (a.), and P are presently arbitrary func-
tions. ° ne ncha'nicaP wori dring processes in which S changes can be
shown to be independent of path if and only if S = S(o ). ; proof of this
statement may be made by the same method as used in a study of w (Schapery,
1988, Appendix A). The function S(o ) can be absorbed in the functional
dependence of P on S, and thus we may %se S = a whenever S changes without
any actual limitation in the model. Whether S varies or is constant, the
strains are obtained from (4) and (5),

e aP 0 (6

where, by definition,

e - a i /30 (7)
100 1

The E* are defined through derivatives of a fully path-independent
potential, w , and thus it is appropriate to call them "elastic strains".
All stress-h9'tory effects are in the second term in (6), which gives the
"inelastic strains".

In order to obtain a constitutive equation that agrees with Sun and Chen's
I experimental data we select for o0 the quadratic form,

jo = (aij Oi 0j) 2  (8)

where the a,, are constants; as the antisymmetric components of aij have no
effect on co . we may suppose aij = aji. Now,

0 /a i  = aij Oj / 0 (9)

and thus from (6),

e 3P
i = E i -- a G/ 0  (10)

During structure-change processes S = co, as noted previously, and
therefore the coefficient aP/ao o depends on only o 0. For such processes
we may thus write

Wi = 
Ei E o aij O / a

where
E0 = Eo(0o) E -(aP/aoo) evaluated at S 0 (12)

In the terminology of plasticity theory, (11) is for "loading" processes.

Without fiber fracture, the strain in the fiber direction is essentially
independent of stress history in most structural composites; thus, as
assumed by Sun and Chen, a = a = 0. We suppose further that the

composite is orthotropic, regalesof stress-history, where the axes xi
are the principal material axes; this condition implies the only aij which
do not vanish are a22 , a, a 3, a4 ,a55, a66 , as well as a32 (=a23). There
are really only five in ependent cons ants because o may be normalized
with respect to a constant without limiting the geneRality of (5); this

normalization will be done by simply letting a22 = I. If all stresses
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vanish except for a (8) reduces to = i ; thus o becomes the
applied stress for t e case of uniaxial fensil loading nrmal to the
fibers.

For plane stress, 03 = 34 = 35= 0, so that (8) reduces to

Fo = ( 22+ a66 062) (13)

From (1I),

eEI  E1  (14)

2 £2 o+ o/a (15)

£6 = £6 +a 6 6 £o:6/Co (16)

For uniaxial tension normal to the fibers, o = a as noted previously.
Equation (15) then shows that E reduces to the 2inelastic component of

I For general stress states Eis at most a function of oo, according
to (12).

By introduCing some additional specializations, including the assumption
that the c. are linear in the a i, we will finally arrive at Sun and Chen's
findings fbr uniaxial loading of unidirectional, rectangular specimens.
Namely, for loading in the x direction (cf. Fig. 2),

2 .2 -csu~
Si = cOs 6 3x' 02 = sin ° 0x' 6 = -sine cosei x  (17)

where a is the applied force/area. The axial strain E may be expressedin term of the strains in (14)-(16) using the se ond-order tensor
transformation rule,

Ex = cos 2 a + sin 2e E2 - sin6 cose E6 (18)

Substitution of (14)-(17) into (18) yields

e + h2  (19)x 0 X 0 O

weeEe is the elastic axidl strain, and
where Lx 1 hxx h~~'0 ad(9

h - (sin4 + a66 sin2 cos2e) - (20)

Observe also from (13) and (17) that

o = ho x (21)

We can obtain the function h(e) used by Sun and Chen by multiplying (20) by
/3/2. Equation (19) is the same as derived by them from a plasticity

model for loading behavior; this model will be discussed in Section 3.

Experimental information on E - c behavior for two fiber angles e may be
used with (19) to eval~ate x a66  and the function E = 0( o) .
(Alternatively, one may use data from several fiber angles to d8termne thea66 which minimizes the data spread in the £ (a ) plot.) Results from
tests at other fiber angles then serve to check (1). A simple power law

£0 = A o0 (22)

where A and n are positive constants, was reported by Sun and Chen to fit
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the data out to specimen failure ( 1 I%); for a boron/aluminum composite
n = 5.8 and a6 6 = 4, whereas for grahite/epoxy n = 3.7 and a66 = 2.5. (The
constant a66 used by Sun and Chen is one-half of the a 6 used here.)
Values of a = 4 and n = 2.4 have been obtained recently y Mignery and
Schapery (A9'8) from studies of unidirectional and angle-ply laminates of
the same rubber-toughened graphite/epoxy material used to develop the
curves in Fig. 1. Although the latter exponent (n = 2.4) is smaller than
that reported by Sun and Chen for an untoughened unidirectional
graphite/epoxy material (n = 3.7), the angle-ply stress-strain curves
(Mignery and Schapery, 1988) exhibit a larger degree of nonlinearity
because the Lotal axial strain range is approximately 51, as compared to 1%
in the former study.

In the much earlier work of Lou and Schapery (1971) it was found that the
parameter o0 in (13) accounted for the effect of stress state on the
functions usea to characterize nonlinear viscoelastic behavior of a
glass/epoxy composite. The motivation for the use of this parameter came
in part from the observation that the octahedral shear stress T can
normally be ,!sed to correlate multiaxial yielding of plastics (justoi for
metals). As a simplification, the matrix was viewed as a uniformly
stressed layer of material sandwiched between layers of rigid fiber
material; i.e., the lines in Fig. 2 at the angle e were imagined to define
layers rather than fibers. Using the principal material axes, Fig. 2, this
shear stress is

1 -2 2 2 2 2 2(
oct = 31(ol- 2 + (02 03) + 23 - 1) + 6( 4 + 5 + 62)1 (23)

where the i in this equation are the stresses in a matrix layer.

For a matrix in plane stress a and are the same as the stresses
a0 and o acting on a composite onsistlng of parallel layers of matrix

an reinflrcement material. A factor u was also introduced, as defined
by the relationship 0 = e2 . For a linear elastic, isotropic matrix

is the Poisson's atio, and for an incompressible elastic or rigid-
plastic matrix Ve = 0.5. Use of these idealizations in (23) yields

Toct = (2/3c)2 (022+ c.62)- (24a)

where

c E 3/(1 - ve + Ve2 (24b)

As reported by Lou and Schapery (1971) a finite element analysis of a
linear elastic composite with a square array of fibers was made to predict
the average octahedral shear stress in the matrix. Apart from a numerical
factor, (24) was found to be a fairly good approximation to this average.
Considering c to be the arbitrary constant a66 , it is seen that (24a) and
(13) are equivalent parameters for characterizing nonlinear behavior. It
is also of interest to find from (24b) that c = 4 when ve = and c = 3.88
when v = 0.35; the former value is the same as found experimentally by
Sun and Chen (1987) for the boron/aluminum composite and by Mignery and
Schapery (1988) for the rubber-toughened graphite/epoxy composite; the
latter value of c was reported by Lou and Schapery (1971) for glass/epoxy
material.

Most of the experimental work reported above is for proportional loading,
(17). However, that of Mignery and Schapery (1988) involves
nonproportional loading of the plies in an angle-ply layup. TL.. studit;
provide limited experimental support for (11). We are currently making
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additional studies of angle-ply and unidirectional laminates under loading,
unloading and reloading to address the applicability of (10) and (42) for
toughened and untoughened graphite/epoxy composites.

It should be observed that the difference between loading and unloading
curves in the model (6) is characterized by one scalar factor
aP/ao, where P = P(o , S). The loading curves, do /dt>O ,are predicted by

using = o0. For unfoading, do /dt<O , the therm8 dynamic requirement of
positive entropy production and t&he path-independence of the unloading work
are violated unless S is constant Schapery (1988). Consequently, Fur
arbitrary stress histories, S is always the largest value of a0 up to the
current time.

This representation does not account for the difference between unloading
and reloading curves. Tonda and Schapery (1987) were able to account for
this difference for an untoughened graphite/epoxy composites using linear
viscoelasticity theory; the approach to combining the effects of
viscoelasticity and structure changes was developed earlier (Schapery,
1981). Whether or not this approach is able to account for all of the
hysteresis is not presently known. It may be necessary to introduce
another S-parameter which is activated at the start of reloaoing.

3. THE NORMALITY RULE FOR INELASTIC STRAINS

Let us now compare the normality rule employed in plasticity theory to
predict plastic strain increments with the type of normality contained in
(4). Following Sun and Chen (1987), we take o = k as the yield condition,
w.-3e k iF a scalar that varies with the a9nount of plastic straining.
Plastic strains are introduced in the same way as is commonly done for
metals,

di - dci (25)

where dEe, dE., and dEe are infinitesmal changes in plastic, total, and
elastic siraini, respectively. The elastic strains are assumed to be
linear in the stresses,

E e = Si..0 (26)

where Si are the constant compliances. The associated flow rule for
plastic srain incremenis is

30

dEP - dx (27)
1 3 i

where dx is a scalar. This equation shows that de_ is a vector which is
normal to the surface co = constant. From (8) and 7

dP= 2a dx (28)
1 13 3o

For proportional stressing a. = k.o (where the ki are constants) (28) may
be integrated to obtain 2the total lpPastic strains,

= a 00 ( 0 dx)/o0  (29)
1 ac i 0o

which is also a vector normal to the surface oo = constant. The total
strain is

= e p (30)1 E = i € "
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which may be compared to the strain (6) derived from a dual strain energy
density. The "inelastic strain" vector in (6),

SI aP ao0
Ei Pao oi  (31)

is normal to ttI) surface a = constant, just as E. in (29). However, in
contrast to e., the normality of E. exists for roportional and non-
proportional stlessing. Observe also' that this normality is preserved
during unloading and reloading; recall that the coefficient aP/ao depends
on both a and S, and that S = a only when a is equal to it largest
value (consqdering all values up to~he current tme).

Consider next for further comparison a type of normality discussed by Rice
(1971) for incremental inelastic strains. He developed (4) from
thermodynamics with internal variables and used it in a study of inelastic
behavior of metals; S is one of possibly many internal variables. A change
in strain due to infini esimal changes in both oi and S is, from (4),a w -0--d

d~i = - doia+ - S (32)
I where

G --aw /aS 
(33)

Rice observed that when elastic and inelastic strains are defined through
increments, as expressed by the first and second terms in (32),
respectively, the incremental inelastic strain,

dEI aG dS (34)

is normal to the"yield" surface G = constant. In fracture mechanics G (33)
is called the "energy release rate". When there are two or more structure
parameters Sm (m = 1, 2, .

d a m d a m (35)

where

Gm  -awa/aSm (36)

Thus, the mtn component of dEI is normal to the respective surface, Sm =

constant, as noted by Rice. 1

When we use the special form for w in (5), Rice's incremental elastic and
inelastic strains becomea2w

de -wdo = W doj - -da (37)ai2o j  2aiao j  3 a ac i

I aG a2  a2P _ o

d I aG S a2p dS a2 P dS (38)
1 aoi  aSaa i  Sao 0 i

Notice that dE. is normal to the surface a = constant and that an
increment in the elastic strain defined in (7) Ps equal to only the first
term in (37). Observe also that the tangent elastic compliance
matrix -aw /aaio-a used in defining the incremental elastic strains in
(32) is a function of the structure parameter S as well as stresses, while
that based on the elastic strain in (7), -a w ao/3aia., depends only on the
stresses.
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4. A CONSTITUTIVE EQUATION WITH LINEAR UNLOADING BEHAVIOR

In characterizing the effect of damage on composite material behavior, it
is commonly assumed that the material is linearly elastic when damage is
constant. This linearity assumption is equivalent to using a dual strain
energy density in which stress dependence is limited to first and second
order terms,

wo = -bo -b ii b j0ij (39)
0 ii ij~

where bo , bi and b may be functions of one or more structure parameters
Sm. In this case strains (4) are

Ci = bi + bijoj (40)

The residual strains bi and compliances bii may vary with stress history
through changes in Sm; only one S will be used here. The strain energy
density is related to w through (3),and nay be written -s

1

w = C0 + ci Ei + cij Ei Cj (41)

which provides the stresses

i = c i + cij Ej (42)

The relationship between the b's and c's may of course be obtained by
comparing (40) and (42). These second-order energies may be sufficiently
general to predict ply stress-strain behavior if the unloading and
reloading curves can be approximated by the same straight line whose
position (ci) and slope (cij) vary with S (as shown in Fig. 3).

The work (foidE.) and dual work (- f-.do.) during structure-change
processes are independent of path or history 'if and only if (Schapery,
1988),

- g or - - g 
(43)

dS>0

dt

C ijl(S)

F~~dS i
'T =o0

0

Fig. 3. Stress-strain behavior according to (42), showing
loading, unloading and reloading.
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where g is at most a function of S; the quantity g is the specific fracture
energy if S is the fracture surface area of a crack. (Equation (43) is not
limited to the second-order energies (39) and (41).) As shown by Schapery
(1988) S car always be chosen so that (43) reduces to

- I or--- = 1 (44)

Observe that the term c (= - b ) can be omitted as it can be absorbed in
g in (43). 0

It should be added that the derivatives aw /3S and w/ S are always equal
which may be easily shown by taking the diff erential of (3). Equation (44)
provides the relationship for predicting S as a function of stress or
strain. Thermodynamic theory requires dS/dt > 0 (Schapery, 1988); thus,if
(44) predicts dS/dt < 0, S is actually constant and (44) is to be
disregarded.

For the second order energj (39) with bo = 0, the equation 'or S is
db. db.

dS i 2 dS i 1=

Although (39) is only of second order in the stresses, it is still
sufficiently general to mathematically represent Sun and Chen's data
discussed in Section 2. Indeed, this may be done by assuming the bi are
constants and then using

b ij =S ij + B S r ai4ab.= S. a.. (46a)

where

n - I 1-r r (46b)r - n + 1 ' B =A (2/r)(4 )

Also, Si are the constant elastic compliances, and ai,, A, and n are the
constant appearing in (8) and (22); observe that 0 -' r - 1. Equations
(45) and (46) yield

S = (Br/2) (n+1)/ 2 0 (n+1) (47)

During loading, do /dt > 0, (47) is used in (46a) to predict instantaneous
values of b-. or unloading, do /dt < 0, the coefficients bi • are
constant becadse S has a constant value equal to that at the start of
unloading. Upon reloading, S again changes in accordance with (47) when
a reaches its largest past value. Unloading and reloading data are not

re orted by Sun and Chen (1987), and thus the range of applicability of
this particular model cannot be assessed at this time. It is important to
notice that this phenomenological characterization is not necessarily
limited to brittle or to ductile composites, as Sun and Chen's results are
for both types.

Finally, we should mention that the theory based on path-independence of
work has been successfully employed in limited studies of particle-
reinforced rubber (Schapery, 1987b), and a thermoplastic composite (Dan
Jumbo et al., 1987). In the former case nearly all nonlinear behavior was
expressed in terms of S-dependence of bi.; in the latter case the residual
strains bi, instead of bii, were used td account for most nonlinearities.
The small amount of nonlilnarity that was not adequately represented by the
second-order energy functions was apparently due to the large strains
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(= 60%) in the filled rubber specimens and fiber or microfibril alignment
(causing an increase in modulus for loading in the fiber direction) in the
thermoplastic composite.

5. CONCLUDING REMARKS

A possible approach to predicting multidirectional-fiber laminate behavior
would consist of using a unidirectional ply energy density, Such as given
by (5) or (41), with the usual displacement assumptions of lamination
theory (Christensen, 1979). Delaminations and their growth could be
accounted for essentially in the same way as done for linear and nonlinear
elastic laminates, but with additional bookkeeping when there is any
appreciable difference between loading and unloading stress-strain
behavior. The work of deformation (which is equal to w - w + S if the
second equation in (44) is used to predict S) is treated Just like strain
energy in nonlinear elastic fracture mechanics (Schapery,1987a); in
particular, wT is used in strain energy release rate and J integral
calculations.

With brittle-matrix composites, a significant number of transverse pl)-
levPi cracks may develop prior to structural failure (Johnston, 1987).
These cracks are some,.1hat planar with the plane parallel to the fibers and
perpendicular to the lamination plane. Typically, after rapid growth, they
are arrested at the ply boundaries. IF more than one fiber orientation is
used, a laminate usually is capable of supporting loads well above that at
crack initiation. Whcther or not one S-parameter is sufficient to account
for a general type of inelasticity which includes transverse cracks
requires further study. It should be observed that even with only one
parameter, an appreciable effect of these cracks on the laminate behavior
may be taken into account through the wa) w or w depends on S; for
example, bt may have the form in (46a) at small S, and then a considerably
different fVrm at large S when transverse cracks develop. Physically, S
may reflect micro-damage (e.g. rubber particle cavitation) and plastic
deformation until transverse cracks develop, and then at larger S-values
account for these mechanisms as well as transverse crack density. If the
effects of crack density and its growth are -ot sensitive to properties of
adjacent plies with different fiber angles, an experimental program could
use the simple angle-ply layup. Similar observations can be made for
distributed interior delaminations (Harris et al., 1987); however, at least
two plies would comprise the basic element of a laminate.

We are presently using these ideas to characterize and predict the
mechanical response of untoughened and toughened graphite/epoxy laminates,
recognizing that the proposed method has to be considered as tentative
until a significant amount of additional experimental and analytical
studies are made. Such studies should help to establish the range of
validity of the work-potential method as well as define the experimental
program needed for a complete characterization. Micromechanical models of
damage in linear elastic composites (Wang and Haritos, 1987) should be
helpful in analytically modeling the effect of distributions of cracks on
moduli or compliances, and thus reduce the experimental effort. Schapery
(1987b) used this approach in an elementary model to relate the orthotropic
elastic properties of a particulate composite to a statistical distribution
function which characterized the damage, and employed an evolution equation
like (44) to predict the change in properties through an S-parameter which
is an overall measure of the damage. A similar procedure should be
applicable to laminates.
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Report No. MM 5762-89-10 1. INTRODUCTION
April 1989 The nonlinear behavior of unidirectional and

multidirectional fiber composites traditionally has been

modeled using elasticity theory (1) or plasticity theory
in which the unloading mciuli are constant (2,3).

MECHANICAL CHARACTERIZATION AND ANALYSIS OF iiowever, resin matrix composites often exhibit nonlinear
behavior which is due at least in-part to inelastic

INELASTIC COMPOSITE LAMINATES WITH GROWING DAMAGE* mechanisms that alter the unloading moduli. AS
illustrated in Fig. 1 for

R.A. Schapery

Civil Engineering Department T

Texas A&M University

College Station, TX 77843

Fig. I Stress-strain behavior of Hercules AS4/3502
angle-ply laminate jz3013S showing inelastic

behavior.
ABSTRACT

A method of laminate characterization and analysis the brittle-resin composite studied later in this paper,
is described in which growing damage and other inelastic the inelasticity (i.e. strain history-dependence) is
phenomena are treated using the same mathematical neither small enough to neglect nor large enough to use
formalism, thus simplifying the description of classical plasticity theories in which unloading follows
mechanical response. It is based on the observation the initial modulus E For several unidirectional and
that the applied work is not sensitive to many details angle-ply layups oftis graphite/epoxy material we have

of the deformation history. Following a brief found that the residual strain upon load removal is
ciscussion of the thermodynamically-based theory, we use typically 20-40% of that for unloading along the Eo -
a special version along with experimental data on a line. There is also a small amount of rate or time-
graphite/epoxy composite to obtain an explicit dependence even in the room environment.
mathematical characterization of a unidirectional ply. In this paper we discuss a way of characterizing
Predictions of mechanical response are then compared to nonlinear inelastic behavior that may arise from a

experimental results for a variety of layups, one of variety of mechanisms, including microcracking,
which delaminates from the edges. delamination, void growth, shear yielding, and

crystalline slip, and therefore is not limited to resin-
NOMENCLATURE matrix or metal-matrix composites. It is based on the

a Delamination depth theory in (4), which uses Rice's (5) thermodynamic

b, c, r Coefficients in strain energy description of inelastic behavior. Some motivation for

2 6 the theory has come from our experimental studies of
Ex, El. E2  Young's Modulus GPa (lb/in x106) rubber-toughened and untoughened graphite/epoxy (6,7)

fm Thermodynamic force under axial-torsional loading, which show that the
stresses and mechanical work are practically independent

,i 12 Strain-dependent coefficients of deformation history for suitably limited paths. lhis

G12 Shear modulus GPa (lb/in 2xlO 6) limited path-independence leads to a mathematical
description of mechanical behavior which is analogous to

Qij Reduced modulus that used for predicting stable crack growth and its

S, S 
5

, Sm Structural parameter effect on global structural response.
In Section 2 the theory for a unidirectional ply or

S, ws  Work needed for structural changes/vol laminate is outlined, and the plane-stress case used in

SR  Cube root of S later sections is described; the theory allows for
elastic nonlinearity (such as that due to fiber-

w, w Strain energy/vol straightening) and inelastic nonlinearity during
wT Total work input/vol loading. Sections 3-5 discuss the experimental program

and both linear and nonlinear behavior; after the basic

W Total work input ply characterization is accomplished, response of

x Cartesian coordinate several laminates is predicted and shown to be in good
€, C i  Strain agreement with the experimental findings.

V, v12 , Nx Poisson's ratio ______

v , v i N treoisson' ( i o 3)  *Published in Mechanics of Composite Materials
, i Stress (lb/in 2x1O0 and Structures, ASME AMD-Vol. 100, 1-9, 1989.



2. CONSTITUTIVE EQUATIONS FOR A UNIDIRECTIONAL PLY where the overdot denotes a derivative with respect to
time. As the constitutive equation for fm, we specifyBasic theory that for each active parameter, i.e. m 0,The coordinate notation for a unidirectional

laminate or ply is Shown in Fig. 2; the x, axis is f= a Bs/asm )
parallel to the fibers while the x3 axis is normal tothe ply plane. The stresses o and strains where w S = w(S,1 ) is a constitutive function of S .;

also, for those m in which f - aw /aS then 0.
I Each fm is viewed as the foce avAllale to Troduce

X X1 changes in the associated Sm, while /-is the forcerequired for these changes. The sottiA of Eq. (7)

6'yields S m= S I (,-i) or pa am te t  in u m m(0i) for each active
The total work input per unit initial volume durinj

actual elastic or inelastic processes is
X w T = j jidci (8

It is always possible to select c and S Such that they
vanish in the initial or reference state, and thereforeFig. 2 Unidirectional composite and coordinates we use such a choice throughout this paper. Given Eq.
(7), one may easily show that wT is a potential function

W (i=I,2....6) are referred to the principal material of the state (t,, Sm) and, in particular, that
coordinates xk(k=,2,3). We also employ the standard WT - W + ws 1 WT( J( f))/a% (9)
notation in which i=4,5,6 refer to the shearing stresses
and strains, where these shearing strains are twice the (Without loss in generality we specify that w = w 0tensor components, in the initial state.) According to Eq. (9), the Iota)The stresses are related to strains through the work consists of the work of straining w plus the workstrain energy density (per unit initial volume) w = of structural change ws. Moreover, from Eqs.(6) andw ( ti ,  Si) . (7 ),

i aw/ i  (1) w ? 0 (10)
where the Sm are so-called "structural parameters". Quadratic strain energy functionsTemperature and other parameter, (such as moisture) may Consider now as a candidate dual strain energy the
enter; but for simplicity we assume they are constant, quadratic form
and thus do not explicitly show them as arguments. Asmany Sm  as needed are used to account for the w = -b - bo i  bijoio j + r(S i- 0i)(Sj- o.)(11)microstructural !:hanges which produce the inelastic o 2 i2 ij1
behavior. The last term allows for up to six independentIt will be helpful to also use the dual strain structural parameters, while all coefficients may dependenergy density w w S(a, S on these as well as other parameters; unless thisdependency is restricted in some way the last term isw w - oi 1i (2) redundant. The strain Eq. (3) becomes

which is seen to be the negative of the complementary 4i = bi + bijoj, rlj(SJ" Oj (12)strain energy density. The summation convention Isemployed wherein a repeated Index implies summation over Both bi and r contribute to the residual strains (i.e.its range. By using Eq. (1) with the differential of the strains wen o. = 0). As a further specializationEq. (2) for constant Sm, we find of the theory, we assume that the bi are independent of
Sm and Si and that the remaining coefficients and

= -aw /aoa (3) rij depend on only one parameter, S, which we take'lo bew . The term bo affects only Eq. (7), and can beChanges in S may be related to stresses or strains absorbed into ws, although the inequality (10) wouldby using a constTtutive equation for the thermodynamic still apply only to ws . When the Sm define only theforces f,; these forces are, by definition, state of damage in the form of cracks and voids, b. is
the surface free energy, and thus may be viewed as thef -3w/3S (4) energ available for healing; here we assume b° Z 0 sithatthat 

0.The differential of Eq. (2), for independent changes With these restrictions on the coefficients, Eqs.dSm, yields (5) and (7) yield
aw

fm -;w,/3Sm (5) 2=j- if S - O (13)
The second law of thermodynamics allows only those and
changes for which

f r(S- ?j) 0 0 if S5. 0 (14)
fm Sm 0 (6) If all S. , 0 and if ri is positive definite, then Eq.m F
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(14) implies and unloading b ha ior in terms of the coefficients in

Eq. (20), where S represents all structural parameters.

S. = (15) In all of the subsequent work we shall be concerned

j jwith only loading processes, defined here as those for

and Eq. (12) reduces to which > 0 as well as S = o or else ri. = 0.

Moreover, we shall assume b- c1 -, 0 except in a brief

b. + b. (16) discussion on thermal residual strains. With these
1 iJ jj simplifications

while Eq. (13) becomes I
dO w = ij (21

1 = 1 (17) and
2 dS l "j

We may now give a physical interpretation for the 0 = cij (22)

three sets of coefficients in Eqs.(ll) and (12). The

b i • are compliances that in general vary with the work Also noting that Eqs. (4) and (5) imply

do e in changing the microstructure, S. Since S= ws , aw/aS = aw /5S, then from Eq. (13),

Eq. (10) implies t - 0. If we know the functions
bij(S), then Eq. (17) may be used to predict S In terms aw - (23)

of stress history; if the equation predicts t < 0, then

we set S = S, where S is the largest value of S up to From Eq. (9)

the current time. If Eq. (17) is subsequently

satisfied, then again it is used to predict S. S = wT - w (24)

Whenever S. ,j, then instead of Eq. (16) we have
from Eq. (12). which shows that the instantaneous value of S is the

shaded area in Fig. 3.
bi* rijSj + (bi- rij)o 18) Constitutive equations for plane stress

It is seen that by means of r.i we may simulate the Constitutive Eq. (22) has the same form as that for

effect of internal surface roughness and other a linear elastic material. If we assume the material is
irregularities in resisting crack closing and sliding orthotropic, with principal material directions xk, then
and void collapse during unloading; whenever all we may use standard linear elastic equations to
S j. these coefficients have no effect on the strain, characterize ply behavior in terms of principal

E . (A). Had we allowed for dependence of bi on Sm, moduli. From (8),
then these coefficients would produce the type of
residual strains usually associated with plastic 01 = Q11,1+ Q122a)
deformation mechanisms, such as crystalline slip.

The strain energy density w corresponding to Eq. 02 = Q12'1 + Q22'2 (25b)

(11) may be obtained from Eq. (2) after stresses are (25c

expressed in terms of strains. Whether or not the rij '12 = Q66Y12

enter, it is of the formw - Co+ ci + I c ic j  (19) where

F o ( 2 i.Q1 ( E 1/0 Q22 z E2/0 (26a)
5 From Eq. (1), :2b

0Q12 12Q22 D = 1 - y12v21 (26b)

i ijtj (20)

U By comparing Eq. (20) to (16) or (18), we may obtain the v21 = v12E2/EI ' Q66 G26c)
coefficients in Eq. (20) in terms of those in the Only the Young's modulus for loading normal to the

former equations. Figure 3 illustrates the loading fibers E2 and the shear modulus G12 are assumed to vary
as a result of inelastic mechanisms. The remaining two

d , principal properties, i.e. Young's modulus in the fiber
S0direction E and Poisson's ratio vl, are assumed to be

independent of S, which is reasona-*e if the fibers do
not break. Indeed, our experimental results from
loading and unloading tests parallel to the fibers sho.
negligible hysteresis in axial and transverse strains,

Cij(S) even when the maximum strain is close to the ultimate
value. However, there is some elastic nonlinearity

which is not negligible for our purposes; El increases
r dS 0 and E9 and decrease with increasing strain.

di In ordeY to account simultaneously for inelastic

effects in E2 and G12 and nonlinear elastic effects in

E E , E and "12 we propose the following modified form of

Ci~i )IEq. ( 5),

Fig. 3 Stress-strain behavior according to Eq. (20), 0I = Q1 1 f 1  'Q-22F212  (27a)

Showing loading, unloading and reloading.

02 = IQ2 2f2 11  Q22f2c2  
(27b)

I



4

'12 = G12'12 (27c) supplied in unidirectional prepreg form and cured in our

where air-cavity press using the supplier's specification for
the Cure cycle. The specimens were cut from 12"x2"
plates and stored in a dessicant until they were strain-

(lf12dc, 1 (28) gaged and tested under uniaxial loading in an ambient
"12 (1) 11 1 2 22 environment of about 75-F and at a tensile strain rate

and 0 0 of 0.005/min.
All unidirectional and angle-ply layups consisted

E (,I) d, 2 of 12 plies. Most specimens were 0.5 inch wide, with a
0 1 1 E90 (C2 ) length of 7.5 inches between the glass-epoxy end-tabs.fl O 12 Lv d_'(T E f V (29) Some lxlO inch specimens were also tested for comparisonT E p ut a purposes; no significant differences between the 0.5 and

The strain-dependent functions f, and f12 are the ratios .0 inch wide specimens were found. By screening outrao t asean al i ,r and tangent Poisson's all samples whose thicknesses differed by more than 5f,
r ati 0 (for a i 3 - T l 0). Allowance has very little specimen-to-specimen differences in
been made for eastic onl a u 0 A anehs mechanical behavior were observed. In most cases the
e madeg oinrity under transverse results presented are for an average of two specimens.

° in E.(2 , = 0 ) through f2 ; the quantity The off-axis, unidirectional specimens exhibited the

pe in q. )s th cant modulus for S = 0 from the greatest variability, but we have not attempted to
pecimen. Observe that 11 = - L (t.)/,, where this quantify the scatter. Two pairs of axial and transverse

22 is the transverse strain in a uhiaial test with foil strain gages were used on front and back surfaces1 0 O, op 0 i Eq. in order to average out any through-thickness bending.
Tal ho ctghD in Eq. (26b) is practically unity, and All readings were corrected for gage transverse

although it is not constant we may use its initial sensitivity and strain nonlinearity using thelinear elastic value in all work without any significant manufacturer's data. Several specimens were tested
error. All strain dependence of the moduli is now using two cycles of tensile loading, unloading, andaccounted for through f1, f2 , and f12 , and therefore Ql reloading at successively higher maximum strains.
and in Eq. (27) are those in Eq. 26a); viz E an The specific layups used for the chracterization
Oil are constants, while Q varies with S throug E2; phase and the theoretical-experimental comparisons are
E2 and GInow vary only wiR t . identified in subsequent sections.

The Form of Eq. (27a) and Eq. (27b) is such that
31 a02 4. LINEAR ELASTIC BEHAVIOR

(30)

2 1 Elastic constants
which is a necessary and sufficient condition for The principal properties are
construction of the strain energy function in Eq. (1).
We find that EI= 125.5(18.2), v = 0.334,

w = Q11 111  Q22 122  E2= 9.38(l.36), G1 2= 5.22(0.757) (34)

Q I I- 2 where the moduli are in GPa(Msi). Chebyschev
22 G1 2 '12 /2 (33) polynomials were fit to all stress-strain curves and the

where first-order coefficients provided the results in Eq.
(34). Unidirectional 0' and 90' layups provided

I iI f 2 fd (32) (E * ) and E2 , respectively, while the angle-pl)

- f 1 1 122 2 2c2 laminate 1±4 5 13S provided 012 from

When the elastic behavior is linear Eq. (31) reduces to G12 = Ex/ 2 (l1Nx) (35)

w = (QI2 + 2 + 2VQ G2 2 (33) where E and N are the Young's modulus and Poisson's
1111 Q222 2 2 Y 2 + 1 2 Y (33)ratio o the 1Aminate; although this equation is the

same as for an isotropic material, it reall) comes fromAn alternative Characterization in terms of lamination theory.
stresses using the dual energy was also developed. For
linear elastic behavior it is equivalent to the strain Predictions for unidirectional and anqle-ply laminates
formulation. The elastic nonlinearity was not Predictions based on Eq. (34) and standard linear
introduced by using Eq. (31) in Eq. (2); instead, for theory are shown by the continuous lines in Figs. 4 and
simplicity w was constructed to be similar in form to
Eq. (31), bA with stress-dependent functions as found 20 2
from the uniaxial stress tests. All predictions made - E Y
with this stress formulation were virtually the same as E THEORY 0
found from the strain formulation, Eq. (31). As the 15 EXPERIMENT 1.5 _
strain formulation is far more convenient for predicting 1 5
response of multi-directional fiber laminates, we use _J
only this formulation here. Z -0o
3. EXPERIMENTAL PROGRAM 0

The composite material used in all experimental 0 5 .5
work was a graphite fiber-reinforced epoxy, Hercules' 0
AS4/3502 with a 64.2% fiber volume fraction. It was Z

D
o 0 0> 0 15 3 45 60 ?5 90

THETR (deg)

Fig. 4 Modulus and Poisson's ratio of the angle-ply
laminate versus fiber angle



20 .5 (1j) and unidirectional (,) laminates, where 6 is the

. .. . angle between the loading and fiber directions. The

E 2 sensitivitites are logarithmic derivatives- for example

U 15 EXPERIMENT Ex:E 2 is the plot of

j alog E2 f aE2D 2 ) (36)

o0 z

w Thus, an ordinate value of 0.75 implies a 1% change in

11) E2 produces a 0.75% change in Ex. The modulus and
0 Poisson's ratio of the (±45 ) layup are practically

independent of E , and therefore some other layup is30 15 0 1 5 needed to obtain 2 ' Although the sensitivity to E is
0 15 30 45 60 ?5 90 good at large angles, the failure strain is quite ow.

THETA (deg) The (±30 ) layup provides adequate sensitivity and a
relatively high failure strain, and therefore it was

Fig. 5 Modulus and Poisson's ratio of the uni- selected to obtain E2. Sensitivities in Fig. 7 are
directional laminate versus fiber angle quite good for most unidirectional layups. The higi

failure strain we found for the 15' layup seems to make

this a good choice; however, as discussed later, there

Agreement between theory and experiment is excellent appears to be some difference between the intrins,c

except for the off-axis unidirectional Poisson's ratio. nonlinear behavior of unidirectional and angle-ply
laminates.

Sensitivity studyThe very low failure strain of the 9O1 specimen 5. NONLINEAR BEHAVIOR

i precludes its use for determining E2 as a function of
S. In order to identify good layups for finding E2 as Material characterization

well as G12 , the sensitivity of Young's modulus EX and Figures 8 and 9 show the experimental mechanical

Poisson's ratio N to E2  and G was calculated.
Figures 6 and 7 sCow the results or angle-ply 400.4

Ex G I4 xE, 00 .C

U, U5 0

// ,° .2-j

L .25 
Ln

z _j 100W 0

NxG12 0 .003 .006 .009 .012 .015
AXIAL STRAIN

0 15 30 45 6 75 90

TH T R d e'g Fig. 8 Behavior of 10112 laminate

Fig. 6 Effect of changes in G 2 and E2 on Young's
modulus E and Poisson s ratio N for the
angle-ply laminate

15 .03

30

Ln 2 Nx:E. L, 10 KORETD DATR . cc

.010L0
3j -TH-A THEORY

-EXPERIMENT0
Ln 

x

- I C 0 1 0
W Nx : G12 0 .0082 .004 .006 .00 .01

Ln-2 RXlAL STRAIN

0 1I1 30 4 5 60 75 90 Fig. 9 Behavior of 190112 laminate

I THCTR (deg)

Fig. 7 Effect of changes in G12 and E2 on Young's
modulus E and Poisson s ratio-N X for the3 unidirectional laminate

I



6

After completing the characterization, we predicted
behavior (Out to the ultimate strain) for the 0* anu 90' the inelastic behavior (SO) of the (i4 1 specimen using
specimens, respectively. Both modulus and Poisson's the linear elastic (fi = 12 = f I I and nnnlinear
ratio are seen to vary somewhat with strain. Data from elastic representations. No signican difference was
load-unload-reload tests showed negligible departures fd C l one may use Eq (35) to obtain G
from the single-load 0' curves, as noted previously. from Consequenty, o u 1 12
Roughly 75% of the nonlinear behavior in the 90' curve rom the data in Fig. i.
was retraced, and thus we used for E (c ) in Eq. (29) a To find E2 , Eq. (21) was rewritten in terms of
secant modulus with 25% less nonleaity than found specimen coordinates (x,y) using second order tensor
dsecntl oms wth 25 est da Son fodr transformations for the stresses and strains. Then, byd ire c t ly f ro m t he 9 0 - te st d a ta . Se c o n d o rd e rus n t h c o d i n t at 1 0 f r n g l - )
Chebyschev polynomials were found to represent the 0' using the condition that = 0 for an angle-pl

and 90' data very accurately; the uncorrected data for N ere expressed as functions of G1 and o . rTis
Poisson's ratio in Fig. 9 were adjusted by a constant rewere expeed s fin s of nd 2 a tif
factor so that the initial value of 2 1agreed with the re at enabled us to find G12 and E as a functiim n of

first expression in Eq. (26c); 2pparently, the the axial strain. Although 4e (±30J specimen provides

manufacturer's transverse sensitivity correction factor both G12 and E2 , we found that the higher ultimate

for the transverse strain gage is not sufficient to strain of the (±45') specimen enabled G1 2 to be

fully account for this sensitivity when the Poisson's determined out to a 17% larger value of S, and thus only
ratio is very small. Tne polynomials were used to the latter G was used subsequently. The modulus 12evaluate the secant moduli and tangent Poissons ratio was predicte out to the same maximum S using the
in Eq. (29). The top dashed line in Fig. 9 is the polynomial.
predicted9).issonsoratioefromnEq.n(27).whensalleThe procedure discussed thus far provides E and
predicted Poisson's ratio from Eq. (27) when all G12 as a function of axial strain from each o the

in order to complete the characterization needed specimens. It remains to relate these strains to the
f Ir Eq. (27). Ec meeS) and r= were obtained structure-change work S, as given by Eq. (24). When the
foro the ( 2

)  a E2 ) adat in g12(S) w0 and elastic nonlinearity is neglected, then w = o c /2, so
from the(±30-) and ±45 data in Figs. 10 and 11. that this work for unidirectional and n le-ply

laminates at any given axial strain c is the shadeJ

90 area illustrated in Fig. 3. With elastic nonlinearity
then Eq. (31), expressed in specimen coordinates,

un 75 2.5 - provides w. In the neighborhood of the 2itial state
(C S = 0), both wT and 3 w vary as E , and their

60 2 ' difference, S, varies as . . Moreover, both G12 and E2
u... have non-zero fi -st Cder coefficients In
Li 45 1.5

z Therefore, in order .o fit G2 and E2 with Cheby_.O0

n 30 Lr polynomials, SR  S , rather than S, was used as the
....... "CORI; "Li rJCRS Ul expansion parameter.

15 THERY: LINEPArISCRS 5 - The continuous lines in Fig. 12 for G12 and E2 were

0 .005 .01 .015 .0 1.5

RXIAL STRAIN

,2"' u2 E E2
Fig. 10 Behavior of JI3013S laminate E .2o

.9 0 00000

0 G12 0

4' .6 000 UNIOIR.(15,30,45)300

L 18 .6 0 .01 .02 .03 .04 .05 .06

Li S^ (1/3)
Ln12 -4 o

-1: Fig. 12 Transverse and shear moduli versus cube root of

_J 6the structure-change work

0 . . 0 . 03plotted using a sixth-order polynomial fit in SR to the
. . 2 . a . . data from (±45') and (±30') specimens; the units used

RXIRL STRRIN for S are Msi. The data points show moduli found from
15', 30', and 45' unidirectional specimens, neglecting

Fg. 11 Behavior of 1 laminate the elastic nonlinearity. The effect of this
±453S lnonlinearity was estimated as being too small to account

for the differences shown for E2.
In Eq. (27), Q pr-E t(o)/0 and Q2 a E2 (S)/D, where, as Predictions

an excellent approximation, we have used the linear All material functions (fl, fi, f12 ) and (2 , E2)
elastic constants from Eq. (34) to find 0 = 0.992. have been expressed as polynomials n s rain and R,

I
I
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respectively. In order to predict the instantaneous _0_._

value of S in each ply of a laminate we may use (23). 6.......

This expression is a nonlinear algebraic equation for S. 50 .5
given the strains. The strain energy function is in Eq. ......
(31) or (33). Prediction of ply strains, for each S, n 40 4

was done using lamination theory (8). The numerical in in

method employed consisted of solving simultaneously forw 30 3

the unknown ply strains and S, given the axial strain, .- Ci2

using the Newton-Raphson method; usually only a few _j-----TEOYU
iterations (2 to 5)_were needed for convergence to a d 10 1
relative error of l-. We should add that since SR was x

used as the polynomial expansion parameter, we changed 0 0
Eq. (23) to the form 0 .003 .006 .009 .012

1 w 2 RXIRL STRAIN(~- 3SR2) = 0 (37)
R R Fig. 15 Behavior cf 115112 laminate

and then used the Newton-Raphson method to drive the
left side to zero; the indicated division by SR
increased the rate of convergence.

All predictions that follow are based on the G2 - 30 - .6

and E2 in Fig. 12 found from the angle-ply specimens; U '5 5 0
the nonlinear elastic behavior was accounted for. When .5

both G12 and E2 were found from the (±30') data in Fig. 20 ...... i

10, differences between theory and experiment ii Fig. 10 n .4 L

could not be discerned whether nonlinear elasticity L- 15 3n

("nonlinear fibers") or linear elasticity ('linear Z
fibers") was used, as expected. However, for the U 10 .2 in

results rep- THEORYn
results reported here only one function was used from -J

each of the two laminates. Thus, the predictions in 5 EXPERIMENT 0
Figs. 10 and 11 provide a partial check on the theory. C: __, _,___ ,_

Figures 13-19 show additional predictions 0 .03 .000 .009 .012 .015

AXIAL STRRIN

200 2 Fig. 16 Behavior of 130)12 laminate
---- THEW: 1.0I.Cm r19C.s 0

S 150 .HOT ...-PFICR 1.5 1- 20 ..

Ln 0

Lin

IJ 50 . in.5 1 0 -. 2

cc 0 0 -------.. THEORY I1 .n

0 .002 .004 .00 .008 .01 EX MNFIXIRfL STRIN EX E IM N 0

0 .003 .006 .009 .012

Fig. 13 Behavior of 1±1513S laminate AXIRL STRAIN

20 .4 Fig. 17 Behavior of 145112 laminate

0.2

J 5---THEORY .1 40 .4 CCE0 U1L
x --EXPERIMENT CL j E
CL I 1 0 a: 20 .2 0

0 .002 .004 .006 .000 .01 x

RXIRL STRIN 0 0

0 .004 .008 .012 .016

Fig. 14 Behavior of ±6013S laminate AXIRL STRRIN

Fig. 18 Behavior of J*45/-45/.45/45/0/+45/-451S
laminate.

I
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60 .6 potential,
,n 5 0 . 5 W T = 2 J .w ( I( ) , , 2 2 ) h ( 2 ) . w ( 3 ) h ( 3 ) ja ; L _ , 2 G c a (

40 - --- -OIc
" L..l.- L

:  .4 Owhere B is the specimen half-width, a is the
303 -. delamination depth, is the (assumed) constantto20T "0 0delamination length: hi )are the sect ion thi cknesses

.2 Ln and G is the delamination fracture energy/area. The

J 10 .! 0 growth condition is aWT/3a = 0, which may be written as

CL g 0 G = G c  (39)

fr 0 .004 .008 .012 .01dg

RXIRL STRRIN where G is the energy release rate,
G = w 1)h( I)  _ w(2 )h (2 )  _ w(3 )h (3 )  (40)

Fig. 19 Behavior of I+45/-45/+45/-45/90/+45/-45I S  T T T

laminate This expression was evaluated for two cases gLiced by
the data: (i) the 90 plies are included in w (for
the inner ply-group) and (ii) the 90' plies are

for angle-ply, unidirectional, and tridirectional omitted. The second case intersects the horizontal GC
laminates. In most cases there was little difference line (G0= 1 lb/in from double cantilever beam tests) at
betwppn the nonlinear fiber and linear fiber (fl= f2=  E 0.607, while the first one does so at , Z 0.013,
1? 1) predictions, and so only the nonlinear case is a shown in Fig. 19. Due to transverse craC~s and thes own. inclusion of the elastic nonl inearity always axial fiber compression, the go° plies may lose their

improved the prediction. The "linear variation" in Fig. ability to resist transverse contraction (possibly due
18 uses the initial modulus; it emphasizes the softening to fiber buckling) thus resulting in early
effect of S in the 45' plies. The axial stress delamination. Figure 19 shows that most of the observed
prediction using nonlinear fibers is essentially the delamination takes place between these predicted values.
same as the measured stress.

Figure 19 shows results from three replicate tests Thermal strains and Fig. 12
of a laminate that was selected for its susceptibility Thermal strains due to cool-down from the cure at
to edge delamination. Indeed, delamination was observed 350F have been neglected. We may introduce them through
to gradually develop at the edge and then grow inward, the b , Eq. (16), which can be interpreted as free
beginnng at a strain of alout 0.008. Full delamination thermal expansion strains. Clearly, by using c.- b. in
and specimen failure occurred at approximately twice place of E. in Eqs. (25) - (33), the effect of'thedmal
this strain. Transverse cracking (TC) in the 90' plies strains ma) be taken into account. It should be noted
initiated just before edge delaminations were that the omission of them probably does not explain the
observed. The Poisson's ratio was not affected by the thatrthe in oF themeablyndes adelamination until it reached the enrlylocated differences in E2 in Fig. 12; these differences may

centrally really be due to the effect of the constraint from
strain gages. jacent pi

For the laminate in Fig. 18 the 0' plies are under ad es in reducing microdamage in the angle-ply

a compressi~e transverse stress, while the 90' plig for laminate. It is expected that residual thermal strains

that in Fig. 19 have a compressive stress parallel to in the angle-ply laminate would lead to a lower E

their fibers. In both cases, this compression is due to rather than a higher value, compared to that for t4

the relatively high Poisson's ratio of the (±45) ply- unidirectional laminates.

pair (cf. Fig. 11). No adjustment was made to the
nonlinear elastic coefficients fl, f2 , and f12  to CONCLUSIONS

account for this compression, even though they were in the simplest form of the theory used here, the

determined under tensile loading; as these coefficients unidirectional ply was modeled as a linear elastic

turned out to be linear in strain, a stiffening material with principal shear and transverse moduli that

nonlinearity in tension becomes a softening nonlinearity vary with one scalar parameter (which is equal to the

in compression and vice-versa. When elastic applied work less the strain energy for a unit

nonlinearity was neglected, the agreement with volume). A modified form of this theory was introduced
experimental data was not quite as good as when it was to account for elastic nonlinearity arising from

used. straining parallel and perpendicular to the fibers
(possibly due to initial fiber waviness). Predicted and

Delaminatlon analysis experimental laminate results for various layups were

Prediction of the delamination in the laminate nf found to be in good agreement. In order to predict

Fig. 19 may be accomplished using the same method as for delamination, it was observed that conventional energy

an elastic material, except the work potential density release rate analysis may be used, but the work density
w, replaces strain energy density w (4,6). The two function replaces strain energy density. Although

lowest dotted curves in Fig. 19 are strain energy predictions of unloading and reloading response were not
release rates x 10 (referred to the left axis) for an made, a possible approach was described. Viscoelastic
edge delamination in the outer interface between the -45 behavior was neglected; relatively simple approaches
and 90 plies. They were found by adapting O'Brien's have been proposed elsewhere to account for this
method (9) to the present formulation, as noted above, behavior at crack tips (4) and in the continuum (10).
B~tcally, one first adds the work potential density
w of the central, undelaminated >ction to 3Ahose of ACKNOWLEDGMENT
te two separated laminates, w I after This research was sponsored by the U.S. Air Force
multiplying them by their respective volum4 s. The Office of Scientific Research. The author is indebted
delaminatieo work is then added to obtain the total work to Mr. Bob Harbert for doing all of the experimental

work and to Mr. Mark Lamborn for developing the data
collection and reduction software.
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